

Storage Cost Modeling

PASIG 2019

Julian M. Morley, Digital Library Systems & Services jmorley at stanford dot edu @JulianMMorley

Preservation Storage Cost Modeling

PASIG 2019

Julian M. Morley, Digital Library Systems & Services jmorley at stanford dot edu @JulianMMorley

Preservation Storage Cost Modeling at Stanford

PASIG 2019

Julian M. Morley, Digital Library Systems & Services jmorley at stanford dot edu @JulianMMorley

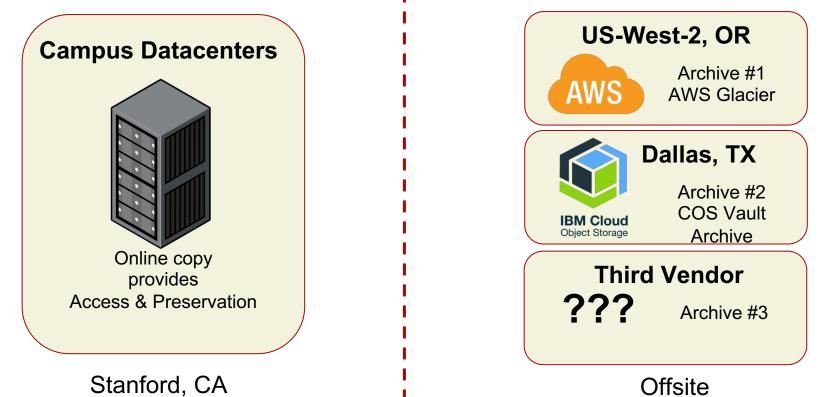
Digital Preservation at Stanford

Stanford Libraries runs SDR: the **Stanford Digital Repository**.

Over 600TB of data projected to double in size in 2019.

Our digital collections are a strategic resource for the university that must be preserved for future generations.

Ground Rules


Preservation is meaningless without access
Preservation means multiple copies
Data sovereignty is a strategic imperative
Continuity planning is vital for long-term preservation

At least 1 copy on spinning disk. Access: **Sovereignty:** At least 1 copy on Stanford hardware. **Preservation:** At least 3 copies (we want 4). **Preservation:** At least 2 different out-of-state sites. **Preservation:** Regular content audits & fixity. **Continuity**: Avoid vendor monoculture. Continuity: Have a plan to add and drop vendors.

SDR Preservation Core

Archive Storage: the Cloud!

Any cloud provider that has:

- S3-compatible API

Stanford | LIBRARIES

- A 'cold' or 'cloud tape' product
- U.S. Data centers outside California
- Published pricing, no significant ingest costs

Amazon, IBM, Oracle & Wasabi* meet these criteria. Dell & Iron Mtn have an S3 cloud product, but no cold tier. Microsoft, Google & Backblaze have no S3 API.

Disk Storage: local SDS

Software Defined Storage (SDS) running on commodity server hardware.

- SDS used by all cloud providers; it works. It scales.
- Allows use of S3 API across local and cloud storage.

DELLEMC

O_JOen ()

- Buy hardware from any vendor, in small batches.
- Commercial and Open Source solutions available.

Local SDS Cost Model

Assuming a hypothetical Ceph cluster.

Need to know:

- A node configuration, price & capacity it provides
- The amount of new storage being added to the cluster per year
- Amount of old storage that must be retired (aged out) each year
- Total number of in-service nodes, and the associated datacenter costs
- Licensing and support costs

Assuming:

- Prices in current (2019) dollars
- Storage costs will decrease over time, and storage density will increase.

Storage Node Configuration

Based on Ceph Storage Recommendations & SMC reference architecture.

SuperMicro Superstorage Server 6028R-E1CR24L 24x 3.5" HDD, 20 cores, 256GB RAM, 2x 1TB NVMe SSD cache. \$25K in 2019 - assuming price remains flat in 2019 dollars.

	Year 1 model	Year 2 model	Year 3 model	Year 4 model	Year 5 model
Disk size	10TB	12TB	14TB	16TB	18TB
Total raw TB	240TB	288TB	336TB	384TB	432TB
Net TB	144TB	173TB	202TB	230TB	260TB

Projected Cluster Growth

Assuming an initial cluster size of 1PB and a 30% YoY data growth rate. At the end of each year we need at least this much provisioned capacity, plus 10%+ headroom.

	Year 1	Year 2	Year 3	Year 4	Year 5
preserved data	1000 TB	1300 TB	1690 TB	2200 TB	2860 TB
required cluster capacity	> 1100 TB	> 1430 TB	> 1860 TB	> 2420 TB	> 3150 TB

	Year 1	Year 2	Year 3	Year 4	Year 5
preserved data	1000 TB	1300 TB	1690 TB	2200 TB	2860 TB
required SDS capacity	> 1100 TB	> 1430 TB	> 1860 TB	> 2420 TB	> 3150 TB
New cap/yr	1100 TB	330 TB	430 TB	560 TB	730 TB
Replacement cap req'd /yr	0	0	0	1100 TB	330 TB
current year node gives:	144TB each	173 TB each	202 TB each	230 TB each	260 TB each
Need to add:	8 nodes (1152 TB)	2 nodes (346 TB)	5 nodes (1010 TB)	8 nodes (1840 TB)	5 nodes (1300 TB)

Simple Preservation Cost Model

Disclaimers:

Stanford | LIBRARIES

- This is a model for budgetary planning purposes only.
- All vendor prices are from publicly available sources.
- Stanford's internal model is a little different; this spreadsheet does not reflect what Stanford is spending.
- Internal staffing costs are left as an exercise for others.

http://bit.ly/PASIGStorageModel

In Conclusion:

